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SUMMARY 

The syntheses of a variety of fluorine-containing adamantane 

derivatives are described. The 13 C NMR spectra of those com- 

pounds with different configurations are interpreted in terms 

of through-bond and through-space substituent interactions. 

INTRODUCTION 

In the course of our 13 
C NMR spectroscopic investigations 

of aliphatic cage compounds [I] we synthesized a number of 

fluorinated adamantane derivatives. It was known in the litera- 

ture that treatment of brominated precursors with silver fluoride 

provided a suitable procedure by which the two epimeric 4-fluoro- 

adamantanones 2 and 1 had been prepared [2]. Similarly, 2-fluoro- 

adamantane (2) had been obtained [3]. Therefore, we decided to 

use this method for the synthesis of a number of 2,4-disubsti- 

tuted adamantanes with at least one fluorine atom. 

*Present address: Jahangirnagar University, Department of 

Chemistry, Savar, Dacca (Bangladesh). 
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RESULTS AND DISCUSSION 

The key compounds in this study were the fluoroadamantanones 

2 (equatorial fluorine with respect to the fluorocyclohexanone 

substructure) and 3 (axial F) [21. Reductions with zinc boro- 

hydride [4,51 afforded the corresponding alcohols 4-z; the 
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mixture of 2 and 2 could not be separated into the components 

chromatographically. When subjected to thionyl chloride it gave 

the two epimeric 4-chloro-2eq-fluoroadamantanes 8 and 2; treat- 
ment with phosphorus bromides (PBr3/PBr5) led to the correspond- 

ing bromo derivatives 10 and 11 - -0 
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The difluoroadamantanes were prepared by different proce- 

dures: The two epimeric 2,4-dibromoadamantanes 12 and 13 [5,61 

were reacted with silver fluoride to give different mixtures 

of the two difluoro derivatives 14 and 15. In a side reaction - - 

traces of fluoroadamantanols were obtained. Interestingly, the 

products of the same reaction with the diequatorial dibromide 

16 151 afforded only 2 and (++z) but no difluorides. The re- - 
maining diequatorial difluoride x was obtained along with 14 

and 15 by treating the mixture of 2 and 2 with sodium fluoride - 
in hydrofluoric acid-pyridine complex solution C71. 

* 

* 

X )( = s: ‘8 
X = CH,: 
X = C(CN),: 

z? 
22 

X =E-NOCH3: a 
X = Z- NOW,: 25 

)( q s: 19 
X =CH2: iii 
X q C(CN),: 23 
X q E-NOCH,: 26 - 

The carbonyl groups in 1 and 2 were converted to the cor- 

responding thiones (18 and l9, respectively), ethenes (20 and - - 
2l, respectively) and dicyanoethenes (22 and 23, respectively) - 
by conventional methods [8 -101. Reaction of 2 with O-methyl- 

hydroxylamine 1111 gave a mixture of the two E- and Z-oximes 

24 and 25 whereas 2 afforded only the E-oxime 26. - - - 

20 - 
H,/Pd-C 

t 
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gq,i, q”’ 
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27 - 
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28 - 
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21 
H,/Pd- C 

70 O/o F 

29 - 

The three 4-methyl-2-fluoroadamantanes 27-29 were pre- -- 

pared by hydrogenation of the exomethylene derivatives 20 and - 

21 over palladium charcoal catalyst. - 

The l3 C NMR data of some of the synthesized fluoroadaman- 

tanes have been published by us previously C12,131. Thus, 

Table 1 contains only those of the remaining ones. 

We have shown that intramolecular through-bond substituent 

interaction is reflected in non-additivities of individual sub- 

stituent effects on 13 C chemical shifts (SCSlCll. In the case 

of 4eq-substituted adamantanones Cl3 and 2eq,4eq-disubstituted 

adamantanes f5l we assumed an n u 
f orbital interaction. Recently, 

we found that the direct carbon-fluorine coupling constant 

1J(13C,1g F) in the compounds 1, 2, 4, 8, l0, l.7, l8, 20, 22 and - 

27 correlate excellently (r =0.983) with the deviation A 

Gexp - 6 talc) between the experimental 13C chemical shifts 

(6 exp) of the fluorine-bearing carbon atoms and their Gcalc 

values, calculated assuming additivity of their SCS c121; those 

A-values were taken as a measure for the interaction of fluo- 

rine with the other substituent cl.21 (Fig. 11. As expected, the 

corresponding data points of the oximes 24 and 25 fit that - - 

correlation nicely. 

This interpretation of the '5 variation [12] was recently 

questioned by Adcock and Abeywickrema [14] who concluded from 

their work that 
1J(13c 19 

t F) cannot be used as a probe for through- 

bond effects. In their series of compounds [14] they had found 

a linear correlation of 
19 F chemical shifts and J( C, 

1 13 lgF) 

values, the ranges being 1.3 ppm and 1.4 Hz, respectively. 
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TABLE 1 

13 C chemical shifts (in ppm) and carbon-fluorine coupling 

constants (in Hz) of various adamantane derivatives 
a 

C-l 

c-2 

c-3 

c-4 

c-5 

C-6 

c-7 

C-8 

c-9 

c-10 

CH3 

lJ 

2J C-l : 

c-3 

35 : c-4 

c-9 

C-8 

c-10 

31.7 32.4 32.2 -b 32.8 33.0 

98.6 94.9 93.6 92.2 95.7 97.3 

35.4 37.1 41.1 34.3 41.3 38.3 

75.3 94.9 162.1 -b 162.3 39.0 

34.6 32.4 28.2 34.1 29.0 33.2 

36.3 35.4 36.9 38.4 37.1 39.1 

25.7 25.7 26.9 26.9 26.6 26.8 

38.4 35.4 30.4 30.4 35.6 36.5 

25.2 25.5 32.7 32.4 31.5 25.9 

35.4 33.9 32.9 31.7 -b 37.2 

61.2 61.1 61.2 19.8 

174.3 185.6 185.3 185.6 183.1 179.8 

17.7 -b 18.3 -b 17.2 17.9 

19.6 16.2 21.7 24.1 19.1 15.4 

<l <l 
b b Cl 41 

<l <l 9.8 19.1 <l <l 

13.4 4.7 <l <1 12c 9.7 

8.5 8.6 <l 41 b 10.6 

a 
In CDC13 solution; 

13 C chemical shifts are referred to 

internal TMS; coupling constants are accurate to + 0.2 - 

0.3 Hz. 
b 

Could not be identified safely. 
C 

Inaccurate value due to signal overlap. 
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’ ‘J(13C,“F) in Hz 

‘O- \ 

l C(CN), 

0s 

I I 1 c , 
-6 -5 -4 -3 -2 -1 0 

A (C-2) in ppm 

Fig. 1. Correlation of one-bond carbon-fluorine coupling 

constants lJ(13C 19 , F) with non-additivity effects (A, for 

explanation see text) of fluorinated adamantane deriva- 

tives,cf. ref. 1123. 
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In our case the coupling constants vary for about 12 Hz; this may 

be explained by the closer proximity of the interfering groups. 

The range of 19 F chemical shifts, however, is very small; we 

measured a difference of only 0.3 ppm between 1 and 22 which - 

represent the extrema in 'J( C l3 ,l'F). Thus, we conclude that the 

interaction mechanisms acting in Adcock's [14] and our compounds 

cannot be the same. 

The l3 C NMR data of the diaxial adamantanes 6, 15 and 29 - - 
meet our expectations [ 51 in that we found positive non-additivity 

effects A (+9.6 and +6.9 for 6; +5.6 and +5.6 for 15 and +8.1 and - 
+6.2 for 29) for the signals of the substituted atoms C-2 and - 
C-4, respectively. These A- values indicate that the non-addi- 

tivity effects in such diaxial configurations originate not only 

in the removal of the 1,3-diaxial hydrogen atom, h. a missing 

a-gauche interaction effects (5,151, but there seems to be a 

considerable contribution from electronic through-space inter- 

action between the substituent themselves. The slight deviations 

A for the signals of C-10 in 5 and 15 (5: -1.0; 2: +1.7; 2: 

-0.4) confirm this latter interpretation since these atoms are 

in antiperiplanar position to both substituents, and it is well- 

known that I- anti SCS react very sensitively to changes in the 

electronic environment of the perturbing substituent [ZEI. 

EXPERIMENTAL 

Melting points were determined by using a Biichi-Tottoli 

melting point apparatus and are uncorrected. Infrared spectra 

were recorded on a Shimadzu IR-400 spectrophotometer, 1 H NMR 

spectra were obtained on Varian T-60 and Bruker WP-80 and 13C 

NMR spectra on Bruker WH-90 and WM-250 spectrometers. For the 

NMR spectra the solvent was deuterated chloroform, and the 

chemical shifts are referenced to internal tetramethylsilane. 

Mass spectra were recorded on Varian CH-5 and 731 spectrometers. 

All compounds or mixtures of epimers were purified by column 

chromatography with silica gel and various ligroin/acetone 

mixtures as eluants and were >98% pure. Reported yields refer 

to isolated samples after purification. They are not optimized 

and are sometimes low due to the high volatility of many of the 

compounds. 
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2-Fluoroadamantane (1) 

2-Bromoadamantane [I71 (1.3 q) was dissolved in 20 ml 

chlorobenzene and treated with silver fluoride (5.3 q). The 

mixture was stirred vigorously at 120°C for 2.5 hrs. The whole 

reaction should be conducted in the dark. After cooling,the 

reaction mixture was diluted with chloroform, filtered and 

evaporated. Chromatographic purification afforded 0.45 g (48% 

yield) of 1 as a white solid. Physical and spectroscopic data 

correspond to literature values [3,71. 

Mixture of epimeric 2 eq-fluoroadamantan-4-ols 4 and 5 --- 

A 300 mg sample of 2 was reduced by zinc borohydride as 

described in refs. [4] and 151. Work-up afforded 205 mg (68% 

yield) of a 2 : 3 mixture of 2 and 2 which could not be sepa- 

rated chromatographically; ir (CHC13) 3610, 3465-3450 (OH), 

1040; 'H NMR 8 4.53 (lH, d, J(*H,*'F) =50.0 Hz), 4.51 (lH, d, 

J(*H,l'F) =52.0 Hz),3.77 (lH, m), 3.72 (lH, m), 2.33 (2H, S, 

Oil), 2.22-1.4 (24H, m); m/e (relative intensity) 170 (3, M+), 

152 (1001, 132 (51, 110 (25), 79 (39). Analysis: Found: C, 

70.15; H, 8.80%. C10H15F0 requires C, 70.55; H, 8.88%. 

2aX-Fluoroadamantan-4ax-ol (2) and -4eq-ol (?I 

A 375 mg sample of 2 was reduced by zinc borohydride c4,51. 

Work-up and chromatographic separation gave 100 mg (26%) 2 and 

44 mg (12%) 1. 

1 Fraction (6-1 

M.p. llP-120°C; ir (CHC13) 3600, 3400 (OH), 1060; 'H NMR 

6 4 . 83 (1H d J(lH , t , *'F) 150 . 0 Hz) , 3.83 (lH, m), 2.83 (lH, s, 

Oli), 2.43-1.43 (12H, m); m/e (relative intensity) 170 (5, M+), 

152 (71, 150 (loo), 91 (41), 80 (591, 79 (88). Analysis: Found: 

C, 71.00; H, 8.80%. C10H15F0 requires C, 70.55; H, 8.88%. 
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2 Fraction (1) 

M.p. 156 -158OC; ir (CHC13) 3650, 3450 (OH), 1020; 1H NMR 

6 4.77 (lH, d, J?H,l'F) =50.0 Hz), 4.15 (lH, m), 1.93 (lH, s, 

Oli), 2.23-1.57 (12H, m); m/e (relative intensity) 170 (11, M+), 

152 (721, 150 (42), 80 (47), 79 (100). Analysis: Found: C, 70.50; 

H, 8.80%. C10H15F0 requires C, 70.55; H. 8.88%. 

2eq-Fluoro-4eq-chloroadamantane (8) and -4ax-chloroadamantane (2) 

A 300 mg mixture of 2 and 2 was dissolved in 30 ml benzene 

and refluxed with 3 ml thionyl chloride overnight. Usual work-up 

and chromatographic separation yielded 64 mg 8 (19%) and 128 mg 

2 (39%) as colorless oils. 

1 Fraction (2) 

Ir (CHC13) 1005; 'H NMR 6 5.20 (lH, d, J?H,l'F) =50.0 Hz), 

4.50 (lH, m), 2.47-1.48 (12H, m); m/e (relative intensity) 

190/188 (36/12, M+), 152 (1001, 133 (61, 110 (261, 79 (26). 

2 Fraction (8-1 

Ir (CHC13) 1000; 'H NMR 6 

4.22 (lH, m), 2.45-1.73 (12H, 

190/188 (18/6, M+), 152 (loo), 

4 73 (1H d J?H "F) =50 0 Hz) . , , , . f 
ml; m/e (relative intensity) 

132 (8), 91 (39), 79 (39). 

(2) and -qax -bromoadamantane (11) - 

A 300 mg mixture of 4 and 2 was dissolved in 15 ml ice- 

cooled phosphorus tribromide and 1.5 g phosphorus pentabromide 

was added under vigorous stirring at O°C. The reaction mixture 

was stirred for further 6 hrs. at the same temperature under 

moisture exclusion. Then it was poured onto ice-water and ex- 

tracted with ether several times. The combined organic layers 

were washed with sodium bicarbonate and water, dried over magne- 

sium sulfate, filtered and evaporated. Chromatographic separa- 

tion of the crude product afforded 44 mg (11%) 10 and 110 mg - 

(27%) 11. - 
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1 Fraction (11) 

M.p. lOY-1lOoC; ir 1010; 'H NMR 6 5.03 (lH, d, J?H,l'F) 

= 50.0 Hz), 4.57 (lH, m), 2.38-1.65 (12H, m); m/e (relative 

intensity) 234/232 (l/l, M+), 153 (1001, 133 (491, 91 (60), 

79 (31). Analysis: Found: C, 52.5; H, 5.85%. C10H14E3rF 

requires C, 51.50; H, 6.05%. 

2 Fraction (10) 

M.p. 145- 1477; ir (CHC13) 1005; 'H NMR 6 5.13 (lH, d, 

J(lH,l'F) =51.0 Hz), 4.37 (lH, m), 2.47-1.50 (12H, m); m/e 

(relative intensity) 234/232 (l/l, M+), 153 (1001, 133 (371, 

91 (511, 79 (28). Analysis: Found C, 52.50; H, 6.20%. C10H14BrF 

requires C, 51.50; H, 6.95%. 

2eq,4ax_ (14) and 2ax,4ax -Difluoroadamantane (15) - - 

A 240 mg sample of the dibromide 12 [51 was reacted with - 
silver fluoride as described above. After work-up and separation 

30 mg (21%) 14 and 12 mg (9%) 15 were obtained. With 300 mg of - 
the dibromide 13 C61 the same procedure gave 10 mg (6%) 14 and - - 

69 mg (39%) 15. - 

1 Fraction (14) 

M.p. l36-138%; ir (CHC13) 970; 'H NMR 6 4.88 (lH, d, 

J?H,"F) =49.0 Hz), 4.53 (lH, d, J?H,l'F) =50.0 Hz), 2.50- 

1.41 (12H, m); m/e (relative intensity) 172 (78, M+), 152 (1001, 

93 (32), 79 (70). Analysis: Found: C, 70.3; H, 9.3%. C10H14F2 

requires C, 69.74; H, 8.19%. 

2 Fraction (15) 

M.p. l25-126%; ir (CHC13) 1015; 'H NMR 6 4.69 (2H, d, 

J(lH,lgF) =50.0 Hz), 2.52-1.56 (12H, m); m/e (relative inten- 

sity) 172 (73, M+), 152 (loo), 91 (341, 79 (77). Analysis: 

Found: C, 69.70; H, 8.30%. C10H14F2 requires C, 69.74; H, 8.19%. 
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2eq 4eq 
, -Difluoroadamantane (17) - 

A 302 mg mixture of 4 and 2 was treated with 350 mg sodium 

fluoride and 15 ml 70% hydrogen fluoride-pyridine solution as 

described by Olah et al. [71. Chromatographic separation of the 

crude product yielded 80 mg (26%) 14 and a 96 mg mixture of 15 - 

and 17 in a ratio of approximately 1: 1 (according to the 
13F 

- 
NMR signal intensities). Since 17 could not be isolated pure, - 

the identification was performed only from the evaluation of the 
13 

C NMR spectrum. 

A 300 mg sample of 2 was treated with phosphorus penta- 

sulfide as described by Greidanus 181 and 220 mg (67%) of 18 

was obtained as red-orange oil crystallizing by cooling. Ir 

(CHC13) 1135 (C=S), 990; 'H NMR 6 4.60 (lH, d, J?H,l'F) = 

51.0 Hz), 3.70 (lH, m), 3.40 (lH, m), 2.55-1.27 (lOH, m); m/e 

(relative intensity) 184 (52, M+), 151 (101, 131 (61, 85 (641, 

83 (100). Analysis: Found: C, 63.1; H, 7.40%. C10H13FS requires 

C, 65.18; H, 7.11%. 

2 aX-Fluoroadamantane-4-thione (19) - 

A 200 mg sample of 2 was treated with phosphorus penta- 

sulfide as described by Greidanus 183. However, reaction tempe- 

rature and time were raised to 100°C and 45 hrs., respectively, 

to achieve optimal yield. Usual work-up afforded 155 mg (51%) 

19 as red-orange oil crystallizing by cooling. Ir (CHC13) 1140 - 
(C=S), 1000; 'H NMR 8 4.90 (lH, d, J?H,l'F) = 50.0 Hz), 3.72 

(lH, m), 3.42 (lH, ml, 2.50-1.85 (lOH, m); m/e (relative in- 

tensity) 184 (22, M+), 151 (4), 131 (31, 85 (651, 83 (100). 

Analysis: Found: C, 65.00; H, 7.40%. C10H13FS requires C, 65.18; 

H, 7.11%. 
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A 300 mg sample of 2 in 20 ml tetrahydrofuran (THF) was 

added dropwise under argon to a THF-solution of an ylide pre- 

pared from (C6H513PCH31 and n-butyllithium. The mixture was 

stirred for 2 hrs. at room temperature, poured onto ice-water 

and extracted with methylene chloride several times. Work-up 

gave 122 mg (41%) of 20 as a highly volatile solid. Ir (CHC13) - 
1660 (&Cl, 980; 'H NMR 6 4.60 (2H, s, 

J?H,l'F.) =51.0 Hz), 

=CH2), 4.44 (lH, d, 

2.66 (lH, m), 2.33-1.27 (llH, m); m/e 

relative intensity) 166 (100, M+), 151 (101, 146 (8), 91 (57), 

79 (32). 

2 aX-Fluoro-4-exomethylene-adamantane (21) - 

As described for the preparation of 20 a 470 mg sample of 2 

was reacted with the same ylide yielding 146 mg (31%) of 21 - 
after work-up. Ir (CHC13) 1670 (C=C), 1095; *H NMR 8 4.66 (lH, 

d , J?H,l'F) = 50.0 Hz), 4.59 (2H, d, J?H,lH) a7.0 Hz, =CH2), 

2.73-1.38 (12H, ml; m/e (relative intensity) 166 (100, M+), 

151 (71, 146 (41, 91 (421, 79 (35). 

2eq-Fluoro-4-dicyanomethylene-adamantane (2) 

A 210 mg sample of 2 was treated with malodinitrile as de- 

scribed in the literature ClOl. After purification 253 mg (94%) of 

2 were obtained as white crystals. M.p. 116 -117.5OC; ir (CHC13) 

2225 (CsN), 1595 (C=C), 1030, 1010; 'H NMR 6 4.56 (lH, d, 

J?H1'F) =48 . 0 Hz) , 3.51 (lH, m), 3.25-2.21 (4H, ml, 2.05- 

1.56 (7H, m); m/e (relative intensity) 216 (100, M+), 196 (501, 

169 (13), 154 (361, 142 (67). Analysis: Found: C, 72.45; H, 

6.10; N, 13.10%. C13H13FN2 requires C, 72.20; 6.06; N, 12.95%. 

2 aX-Fluoro-4-dicyanomethylene-adamantane (23) - 

As described for 22 a 215 mg sample of 2 was reacted to 

form 194 mg (71%) 23 as white crystals. M.p. 192-193OC; ir 

(CHC13) 2220 (C=N),1575 (C=C), 1020, 1000; 'H NMR 6 4.85 
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(1H d J(lH "F) = 49 0 Hz) 9 f I . , 3.53 (lH, m), 3.22-2.27 (3H, m), 

2.03-1.57 (8H, m); m/e (relative intensity) 216 (4, M+), 196 

(41, 174 (251, 148 (371, 79 (1001, 78 (69). Analysis: Found: 

C, 71.90; H, 6.25; N, 13.20%. C13H13FN2 requires C, 72.20; H, 

6.06; N, 12.95%. 

2eq-Fluoro-4-E-methoximino-adamantane (24) and its Z-isomer (25) - - 

A 300 mg sample of 2 was suspended in 20 ml water with an 

excess of methoxylamine hydrochloride 1111 and sodium acetate. 

The stirred mixture was heated to 60°C for 4 hrs., and after 

cooling extracted with methylene chloride. Usual work-up and 

chromatographic separation gave 98 mg (28%) of 24, 108 mg of a 

mixture of 24 and 25 and 55 mg (16%) of 25 contaminated with a - - - 
trace of 24. - 

1 Fraction (24) - 
M.p. 72- 73OC; ir (CHC13) 2825 (OCH3), 1640 (C=N), 1030, 

990; 'H NMR 6 4.55 (lH, d, J(lH,lgF) = 50.0 Hz, 3.78 (3H, s, 

0CH3), 3.43 (lH, m), 2.80 (lH, m), 2.45-1.35 (lOH, m); m/e 

(relative intensity) 197 (70, M+), 166 (281, 146 (321, 91 (411, 

81 (481, 79 (100). Analysis: Found: C, 66.90; H, 8.20; N, 7.25%. 

Cl,,H16FN0 requires C, 66.98; H, 8.18; N, 7.10%. 

3 Fraction (25) - 
M.p. 52 -53OC; ir (CHC13) 2825 (OCH3), 1640 (CsN), 1030, 

995; *H NMR 8 5.15 (lH, d, J(lH,lgF) = 49.0 Hz), 3.80 (3H, s, 

0CH3), 3.40 (lH, m), 2.80 (lH, m), 2.32-1.32 (lOH, m); m/e 

(relatiSe intensity) 197 (92, M+), 166 (321, 146 (451, 91 (41), 

79 (100). Analysis: Found: C, 67.10; H, 8.30; N, 8.10%. 

C11H16FN0 requires C, 66.98; H, 8.18; N, 7.10%. 

2 aX-Fluoro-4-E-methoximino-adamantane (26) 

By the reaction described above a 300 mg sample of 2 gave 

297 (84%) of 26. M.p. mg - 
1635 (C-N), 1020, 975; 'H 

103-104°C; ir (CHC13) 2800 (OCH3), 

NMR 6 4.78 (lH, d, J(lH,lgF) = 50.0 

Hz), 3.80 (3H, s, 0CH3), 3.43 (lH, m), 2.80 (lH, m), 2.54-1.63 
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(lOH, m); m/e (relative intensity) 197 (100, M+), 166 (551, 146 

(411, 119 (35), 104 (41), 98 (461, 79 (88). Analysis: Found: 

C, 67.40; H, 8.20; N, 8.15%. C11H16FN0 requires C, 66.98; H, 

8.18; N, 7.10%. 

2eq-Fluoro-4eq-methy1- (27) and -4ax-methyladamantane (28) - 

A 270 mg sample of 20 was dissolved in 50 ml abs. THF, and - 

after addition of a small amount of palladium-charcoal and two 

drops of perchloric acid the mixture was hydrogenated at atmo- 

spheric pressure and ambient temperature overnight. Work-up 

gave a 2: 3 mixture of 27 and 28 as a white, highly volatile - - 
solid which could not 

the components. The y 

*H NMR 6 4.83 (lH, d, 

J?H, "F) =51.0 Hz), 

and 1.05 (6H, 2d, CH3 1 

153 (56), 133 (37), 9 1 

be separated chromatographically into 

eld was 154 mg (56%). Ir (CHC13) 1090, 980; 

J?H;'F) '50.0 Hz), 4.66 (lH, d, 

2.97 (2H, m), 2.66-1.40 (24H, m), 1.08 

; m/e (relative intensity) 168 (100, M+), 

(50), 79 (56). 

2 aX-Fluoro-4aX -methyladamantane (29) - 

A 146 mg sample of 21 was hydrogenated as described above - 

yielding 104 mg (70%) of 29 as a white, - highly volatile solid. 

Ir (CHC13) 1080, 970; *H NMR 6 4.61 (lH, d, J?H,*'F) = 51.0 

Hz), 2.71-1.36 (13H, m), 1.10 (3H, d, CH3); m/e (relative in- 

tensity) 168 (39, M+), 153 (541, 133 (371, 91 (SO), 79 (56). 
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